Cena: |
Želi ovaj predmet: | 1 |
Stanje: | Polovan bez oštećenja |
Garancija: | Ne |
Isporuka: | Pošta CC paket (Pošta) Post Express Lično preuzimanje |
Plaćanje: | Tekući račun (pre slanja) Ostalo (pre slanja) Lično |
Grad: |
Novi Sad, Novi Sad |
ISBN: Ostalo
Autor: Domaći
Godina izdanja: Ho
Oblast: Matematika
Jezik: Srpski
Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju!
Ilustracije:
Nedeljko Dragic
Matematika (grč. μαθηματική što znači učenje) je formalna i egzaktna nauka, koja je nastala izučavanjem figura i računanjem s brojevima.[3][4]
Iako ne postoji opšteprihvaćena definicija matematike, pod matematikom se u širem smislu podrazumeva da je ona nauka o količini (aritmetika), strukturi (algebra), prostoru (geometrija) i promeni (analiza).[5]
Matematika je nauka koja izučava aksiomatski definisane apstraktne strukture koristeći logiku.[6] Izučavane strukture najčešće potiču iz drugih prirodnih nauka, najčešće fizike, ali neke od struktura su definisane i izučavane radi internih razloga.[7]
Istorijski, matematika se razvila iz potrebe da se obavljanja proračuna u trgovini, vršenje merenja zemljišta i predviđanje astronomskih događaja. Ove tri početne primene matematike se mogu dovesti u vezu sa grubom podelom matematike na izučavanje strukture, prostora i promena.[8][9]
Izučavanje strukture počinje sa brojevima, u početku sa prirodnim brojevima i celim brojevima.[4] Osnovna pravila za aritmetičke operacije su definisana u osnovnoj algebri a dodatna svojstva celih brojeva se izučavaju u teoriji brojeva. Izučavanje metoda za rešavanje jednačina je dovelo do razvoja apstraktne algebre koja između ostalog izučava prstenove i polja, strukture koje generalizuju osobine koje poseduju brojevi.[10] Fizički važan koncept vektora se izučava u linearnoj algebri.
Izučavanje prostora je počelo sa geometrijom, prvo Euklidovom geometrijom i trigonometrijom u pojmljivom trodimenzionalnom prostoru, ali se kasnije proširila na neeuklidske geometrije koje imaju centralnu ulogu u opštoj relativnosti. Moderna polja geometrije su diferencijalna geometrija i algebarska geometrija. Teorija grupa izučava koncept simetrije, i predstavlja vezu u u izučavanju prostora i strukture. Topologija povezuje izučavanje prostora i izmjene fokusirajući se na koncept kontinuiteta.
Razumevanje i opisivanje izmena merljivih promenljivih je glavna karakteristika prirodnih nauka, i diferencijalni račun je razvijen u te svrhe.[11] Centralni koncept kojim se opisuje promena varijable je funkcija. Mnogi prirodni problemi su vodili uspostavljanju veze između vrednosti i količine izmene, i metodi razvijeni pri tome, se izučavaju u diferencijalnim jednačinama. Brojevi koji predstavljaju kontinualne veličine su realni brojevi, i detaljno izučavanje njihovih svojstava i funkcija je predmet analize. Zbog matematskih razloga, uveden je koncept kompleksnih brojeva koji se izučavaju u kompleksnoj analizi. Funkcionalna analiza je skoncentrisana na n-dimenzionalne prostore funkcija postavljajući time osnovu za izučavanje kvantne mehanike.[12]
Radi pojašnjavanja i izučavanja osnova matematike, razvijene su oblasti teorija skupova, matematička logika i teorija modela.
Važna oblast primenjene matematike je verovatnoća i statistika koja se bavi izučavanjem i predviđanjem slučajnosti i slučajnih pojava. Numerička analiza izučava numeričke metode izračunavanjem a diskretna matematika je zajedničko ime za oblasti matematike koje se koriste u računarskim naukama.