Cena: |
Stanje: | Polovan bez oštećenja |
Garancija: | Ne |
Isporuka: | Pošta CC paket (Pošta) Post Express Lično preuzimanje |
Plaćanje: | Tekući račun (pre slanja) Ostalo (pre slanja) Lično |
Grad: |
Novi Sad, Novi Sad |
ISBN: Ostalo
Jezik: Srpski
Godina izdanja: St
Autor: Strani
Spoljašnjost kao na fotografijama, unutrašnjost u dobrom i urednom stanju!
Svaki čovjek ima neke ideale koji ga usmjeravaju u njegovim stremljenjima i sudovima. U tom smislu mi uživanje i sreća nisu nikad bili sami sebi svrhom. Moji ideali, koji su mi obasjavali put i uvijek me iznova ispunjavali radosnom voljom za životom bijahu dobrota, ljepota i istina. Bez osjećaja slaganja s istomišljenicima, bez bavljenja s ciljevima, vječito nedostižnim, na području umjetnosti i istraživanja.
Albert Ajnštajn (nem. Albert Einstein; Ulm, 14. mart 1879 — Prinston, 18. april 1955) bio je teorijski fizičar i univerzitetski profesor. Ajnštajn je jedan od najvećih umova i najznačajnijih ličnosti u istoriji sveta.[1]
Albert Ajnštajn je formulisao specijalnu i opštu teoriju relativnosti kojima je revolucionisao modernu fiziku.[2] Pored toga, doprineo je napretku kvantne teorije i statističke mehanike.[3] Iako je najpoznatiji po teoriji relativnosti (posebno po ekvivalenciji mase i energije E=mc²), Nobelova nagrada za fiziku mu je dodeljena 1921. godine za objašnjenje fotoelektričnog efekta (rada objavljenog 1905. u Annus Mirabilis ili „Godini čuda”) kao i za doprinos razvoju teorijske fizike.[4] U narodu, ime „Ajnštajn” je sinonim za čoveka visoke inteligencije ili za genija.[5]
Predmet njegovih istraživanja su bile kapilarne sile,[6] specijalna teorija relativnosti (kojom je ujedinio zakone mehanike i elektromagnetike), Opšta teorija relativnosti (uopštenje Specijalne teorije kojim obuhvaćeno ubrzano kretanje i gravitacija), kosmologija, statistička mehanika, Braunovo kretanje, kritična opalescencija, verovatnoća elektronskih prelaza u atomu, problemi probablističke interpretacije kvantne teorije, termodinamika svetlosti pri maloj gustini zračenja, fotoelektrični efekat, fotoluminiscencija, fotojonizacija, Voltin efekat, sekundarni katodni zraci, zakočno zračenje, stimulisana emisija zračenja, objedinjene teorije polja, unifikacija bazičnih fizičkih koncepata preko njihove geometrizacije itd.
Biografija
Detinjstvo i srednjoškolsko doba
Albert je rođen 14. marta 1879. godine, otprilike u 11.30 časova pre podne, u jevrejskoj porodici, nastanjenoj u gradu Ulm u oblasti Virtemberg, Nemačko carstvo, što je oko 100 km istočno od Štutgarta. Njegov otac bio je Herman Ajnštajn, po zanimanju trgovac, koji se kasnije bavio elektrohemijskim poslovima, a majka mu je bila Paulina Ajnštajn, devojačko Koh.[7] Oni su se venčali u Štutgart-Bad Kanštatu (nem. Stuttgart-Bad Cannstatt). Po Albertovom rođenju, njegova majka navodno je bila zaplašena, jer je mislila da je glava njenog novorođenčeta previše velika i da je loše oblikovana.[8] Pošto je veličina njegove glave, čini se, bila manje vredna zapažanja kako je on bivao stariji, (što je očigledno sa svih Ajnštajnovih fotografija na kojima se vidi da mu je glava bila proporcionalna veličini tela u svim periodima života), ovu njegovu „osobinu” na dalje su tretirali kao neku vrstu „benigne makrocefalnosti” odnosno smatrali su da „proporcije njegove glave” nisu ni u kakvoj vezi sa nekom eventualnom bolešću, niti da imaju bilo kakvog uticaja na njegove kognitivne-saznajne sposobnosti.[8][9]
Još jedan, poznatiji, aspekt Ajnštajnovog detinjstva predstavlja činjenica da je on progovorio kasnije nego većina prosečne dece. Ajnštajn je sam tvrdio da nije progovorio pre svoje treće godine i da je i tada to nevoljno činio sve do uzrasta od devet godina (videti deo „Spekulacije i kontroverze”). Zbog ovog Ajnštajnovog zakasnelog razvoja govornih sposobnosti i njegove kasnije dečačke sklonosti da izbegava svaku temu u školi koja mu je dosadna, a da se intenzivno koncentriše samo na ono što ga interesuje, neki od njegovih poznavalaca iz tog vremena, kao na primer jedna porodična kućna pomoćnica, sugerisali su čak da je on možda „retardiran”. Ovo poslednje zapažanje nije, međutim, bilo i jedino u Ajnštajnovom životu koje je išlo za tim da mu se prikače nekakvi kontroverzni epiteti ili da se etiketira nekom „patološkom nalepnicom”[9] (videti opet „Spekulacije i kontroverze”). Pošto se niko od članova Albertove porodice nije strogo pridržavao jevrejskih verskih običaja, i za njega je bilo dozvoljeno da pohađa Katoličku osnovnu školu. Iako mu se u početku nisu baš sviđale sve lekcije koje je čuo u toj školi, a neretko ih je i preskakao, on je kasnije, na primer, često nalazio veliko zadovoljstvo i utehu u Mocartovim violinskim sonatama.[9]
Kada je Ajnštajnu bilo pet godina, njegov otac mu je pokazao mali džepni kompas i Ajnštajn je tada shvatio da nešto u „praznom” prostoru deluje na magnetsku iglu kompasa, da bi kasnije ovaj doživljaj opisao kao najveći otkrivački događaj njegovog života. On je, zabave radi, pravio modele i mehaničke spravice pokazujući tako odmalena velike tehničke i matematičke sposobnosti.[9]
Počev od godine 1889, student medicine po imenu Maks Talmud, koji je četvrtkom uveče posećivao Ajnštajnove u toku šest godina, je upoznavao Ajnštajna sa ključnim naučnim i filozofskim tekstovima, uključujući Kantovu Kritiku čistog uma.[10] Dvojica od njegovih ujaka na dalje će „hraniti” ovu njegovu intelektualnu radoznalost, tokom njegovog kasnijeg detinjstva i perioda rane adolescencije, nabavljajući mu ili mu preporučivajući za čitanje knjige iz oblasti nauke, matematike i filozofije. Ajnštajn je pohađao Luitpold gimnaziju (Luitpold Gymnasium), gde je stekao relativno napredno i za to vreme moderno obrazovanje. Sa učenjem matematike započeo je negde oko dvanaeste godine, 1891, učeći samostalno iz školskih udžbenika Euklidovu geometriju u ravni, a infinitezimalni račun počeo je da izučava četiri godine kasnije. Ajnštajn je shvatio kolika je moć aksiomatskog, deduktivnog, razmišljanja proučavajući Euklidove „ Elemente”, koje je on nazivao „svetom geometrijskom knjižicom” (prema tvrđenju Maksa Talmuda).[11] Dok je bio u gimnaziji, Ajnštajn se često sukobljavao sa školskim autoritetima i vređao upravu, verujući da je duh učenja i kreativnog razmišljanja izgubljen usled nastojanja na čistoj memorizaciji gradiva.[9]
Godine 1894, nakon propasti elektrohemijskih poslova njegovog oca Hermana Ajnštajna, Albert se seli iz Minhena u Paviju, italijanski grad blizu Milana. Ajnštajnov prvi naučni rad, pod nazivom Istraživanje stanja etra u magnetskom polju, bio je ujedno tada napisan i za jednog od njegovih ujaka. Albert je ostao u Minhenu želeći da završi školu, ali je završio samo jedan semestar, pre nego što je napustio gimnaziju u proleće 1895, da bi se pridružio svojoj familiji u Paviji. On napušta školu godinu i po dana pre završnih ispita, ne govoreći o tome ništa svojim roditeljima, uveravajući školsku upravu da mu dozvole odlazak uz pomoć lekarskog uverenja dobijenog od jednog prijateljski nastrojenog doktora. Ali to je ujedno značilo i da neće dobiti svedočanstvo o završenoj srednjoj školi. Te godine, u uzrastu od 16 godina, on preduzima misaoni eksperiment poznat kao „Ajnštajnovo ogledalo” (”Albert Einstein`s mirror”). Zureći u ogledalo, on je pokušavao da dokuči šta bi se desilo sa njegovom ogledalskom slikom ako bi on počeo da se kreće brzinom svetlosti. Njegov zaključak, da je brzina svetlosti nezavisna od brzine posmatrača (brzine njenog izvora), koji je, između ostalog, bio podstaknut i ovim razmišljanjem, kasnije će postati jedan od dva postulata specijalne relativnosti.[9]
Mada je pokazao odličan uspeh na matematičkom i naučnom delu prijemnog ispita za upis na Savezni politehnički institut u Cirihu, današnji ETH Cirih, njegov neuspeh u delu ispita iz slobodnih veština osujetio je ove njegove planove. Njegova porodica šalje ga tada u Arau u Švajcarskoj da završi srednju školu, tako da postaje jasno da on neće biti inženjer elektrotehnike, kao što se njegov otac dotada nadao. Tamo, on sluša povremena predavanja iz Maksvelove elektromagnetske teorije i konačno prima svoju diplomu septembra meseca 1896. godine. U to vreme on je bio na stanovanju u porodici profesora Josta Vintelera (Jost Winteler) gde se zaljubljuje u Sofiju Mariju-Janu Amandu Vinteler (Sofia Marie-Jeanne Amanda Winteler), obično pominjanu kao Sofija ili Marija, ćerku profesora Vintelera i Ajnštajnovu prvu draganu. Ajnštajnova sestra Maja, koja je verovatno bila njemu najbliža osoba od poverenja, kasnije će se udati za Vintelerovog sina Pola, a Ajnštajnov prijatelj Mišel Beso (Michele Besso) oženiće Vintelerovu drugu kćerku, Anu. Ajnštajn se zatim upisuje na Savezni politehnički institut, u oktobru mesecu, i prelazi u Cirih, dok Marija odlazi u Olsberg u Švajcarskoj gde je čeka posao učiteljice. Iste godine, on obnavlja svoje virtemberško državljanstvo.[9]
U jesen 1896, Srpkinja Mileva Marić započinje svoje studije medicine na Univerzitetu Cirih, da bi se već posle prvog semestra prebacila na Savezni politehnički institut gde, kao jedina žena upisana te godine, studira na istom smeru kao i Ajnštajn. Milevino druženje sa Ajnštajnom razviće se u pravu ljubavnu romansu tokom sledećih par godina, i pored povike njegove majke kojoj je smetalo to što je ona previše stara za njega i što nije Jevrejka.[10][12]
U 1900. godini, Ajnštajn je stekao diplomu Saveznog politehničkog instituta koja mu je omogućavala da se bavi nastavnim radom. Iste godine on prijavljuje za objavljivanje svoj prvi rad o kapilarnim silama, pod naslovom Folgerungen aus den Capillaritätserscheinungen, ili u prevodu Rezultati posmatranja kapilarnih pojava (može se naći u „Analima fizike” tom 4. pp. 513). U ovom svom radu, on pokušava da ujedini različite zakone fizike, dakle čini pokušaj u onome što će bez prekida nastojati da čini tokom celog svog života. Preko svoga prijatelja, inženjera Mišela Besoa, Ajnštajn će se upoznati sa delom Ernsta Maha, kojeg će kasnije nazivati „najboljom rezonatorskom kutijom Evrope” za fizičke ideje. Tokom tog vremena, Ajnštajn razmenjuje i deli svoja naučna interesovanja sa grupom bliskih prijatelja, uključujući Besoa i Marićevu. Oni tada sami sebe nazivaju „Olimpija Akademijom”. Ajnštajn i Marićeva dobijaju u to vreme vanbračnu ćerku, Lizerl Ajnštajn (Lieserl Einstein), rođenu januara 1902. Sudbina ovoga deteta do danas je nepoznata. Neki veruju da je ona umrla odmah po rođenju, dok drugi veruju da su je roditelji dali na usvajanje.[9]
Zaposlenje i doktorat
Ajnštajn posle diplomiranja nije mogao odmah da nađe nastavničko zaposlenje, ponajviše zato što je kao mladić svojom drskošću očigledno iritirao većinu svojih profesora. Otac prijatelja sa klase zato mu je pomogao da se domogne zaposlenja kao pomoćni tehnički ispitivač u Švajcarskom birou za patente[13] 1902. godine. Tu je Ajnštajn procenjivao vrednost patenata raznih pronalazača, koji su se prijavljivali u ovaj biro, kao i mogućnosti primene tih patenata u tehničkim uređajima, radio je dakle posao koji je ipak zahtevao poznavanje njegove struke, fizike. A posebno je bio zadužen da ocenjuje patente koji su u nekoj vezi sa elektromagnetskim uređajima.[14] On je takođe morao ovde da nauči kako da raspozna suštinu primene patenta uprkos ponekad veoma šturom opisu, a i njegov direktor poučio ga je kako „samog sebe da izrazi korektno”. Dok je ocenjivao praktičnost njihovog rada on je povremeno i ispravljao greške u njihovim dizajnima.[9]
Ajnštajn se oženio sa Milevom Marić 6. januara, 1903. Ajnštajnova ženidba sa Marićevom, koja je bila matematičarka, predstavljala je u isto vreme i lično ali i intelektualno partnerstvo i vezu. Za Milevu Ajnštajn je govorio: „Ona je stvorenje jednako meni samom i koje je jednako nezavisno i jako kao što sam i ja”. Ronald Klark (Ronald W. Clark), Ajnštajnov biograf, tvrdi da distanca koja je postojala u Ajnštajnovom braku sa Milevom, za njega bila preko potrebna, jer da bi upotpunio svoj rad on je morao da postigne neku vrstu intelektualne izolacije. Abram Jofe (Abram Joffe), sovjetski fizičar koji je poznavao Ajnštajna, u jednoj smrtovnici piše o njemu „Autor radova iz 1905 bio je... birokrata u Patentnom birou u Bernu, Ajnštajn-Marić”, i ovo je nedavno bilo uzeto kao dokaz saradničke strane njihove veze. Međutim, prema Albertu Martinezu (Alberto A. Martínez) iz Centra za studije Ajnštajna Univerziteta Boston, Jofe je jedino time pripisao autorstvo Ajnštajnu, jer, kako on misli, bio je to uvreženi švajcarski običaj da se dodaje ženino prezime iza muževljevog imena.[9] Ipak, razmere Milevinog uticaja na Ajnštajnovo delo još uvek su kontroverzno i diskutabilno pitanje.[9]
Godine 1903, Ajnštajnovo zaposlenje u Švajcarskom patentnom birou postalo je stalno, mada ga je unapređenje mimoišlo sve dok „se u potpunosti ne usavrši za mašinsku tehnologiju”.[15] On stiče svoj doktorat pod mentorstvom Alfreda Klajnera (Alfred Kleiner) na Univerzitetu Cirih, nakon prijavljivanja svoje doktorske teze pod nazivom Jedno novo određivanje molekularnih dimenzija (Eine neue Bestimmung der Moleküldimensionen) u 1905. godini.[9]
Annus Mirabilis naučni radovi
Tokom 1905. godine, u svoje slobodno vreme, on je napisao četiri članka[16] koja su poslužila za zasnivanje moderne fizike, bez mnogo naučne literature na koju bi se mogao pozvati, ili mnogo kolega naučnika sa kojima bi o tome mogao prodiskutovati. Većina fizičara se slaže da su tri od ovih članaka (o Braunovom kretanju, fotoelektričnom efektu i specijalnoj relativnosti zasluživali da budu nagrađeni Nobelovom nagradom. Ali samo rad o fotoelektričnom efektu bio je spomenut od strane Nobelovog komiteta prilikom dodeljivanja nagrade, jer je u to vreme samo iza njega stajalo mnogo neospornih, eksperimentalnih, dokaza, dok je za druge Ajnštajnove radove Nobelov komitet izrazio mišljenje da bi oni trebalo da budu potvrđeni u toku budućeg vremena.[17]
Neko bi mogao da smatra ironičnim što je nagrada dodeljena za fotoelektrični efekat, ne samo zato što je Ajnštajn najviše poznat po teoriji relativnosti, već takođe i zato što je fotoefekat kvantni fenomen, a Ajnštajn je, zbog nečega, kasnije postao razočaran kursem koji kvantna teorija zauzela u svome daljem razvoju. Ajnštajn je objavio seriju ovih naučnih radova u ”Analima fizike” (Annalen der Physik). Uobičajeno je da se oni danas nazivaju Annus Mirabilis naučni radovi (od latinske fraze Annus mirabilis što na latinskom znači „Godina čuda”). Međunarodna unija za čistu i primenjenu fiziku (The International Union of Pure and Applied Physics, IUPAP) obeležila je 100. godinu od objavljivanja njegovih opsežnih naučnih radova u 1905. kao Svetsku godinu fizike 2005 (World Year of Physics 2005).
Prvi rad, nazvan O jednom heurističkom gledanju na proizvođenje i transformaciju svetlosti (On a Heuristic Viewpoint Concerning the Production and Transformation of Light, ili u originalu na nemačkom, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt) bio je posebno citiran u saopštenju povodom dodele Nobelove nagrade. U ovom radu, Ajnštajn proširuje Maks Plankovu hipotezu (
E
=
h
ν
{\displaystyle E=h\nu }) o diskretnim delićima energije, na svoju vlastitu hipotezu da se elektromagnetska energija (svetlost) takođe emituje iz materije ili apsorbuje u diskretnim delićima-kvantima čiji je iznos
h
ν
{\displaystyle h\nu } (gde je h Plankova konstanta, a
ν
{\displaystyle \nu } je frekvencija svetlosti, predlažući tako novi zakon
E
m
a
x
=
h
ν
−
P
{\displaystyle E_{\mathrm {max} }=h\nu -P\,}
kao objašnjenje fotoelektričnog efekta, jednako kao i svojstava drugih pojava fotoluminiscencije i fotojonizacije. U kasnijim radovima, Ajnštajn koristi ovaj zakon da opiše Voltin efekat (1906), nastanak sekundarnih katodnih zrakova (1909) i visokofrekventnu granicu zakočnog zračenja (1911). Ključni Ajnštajnov doprinos je u njegovom tvrđenju da je kvantizacija energije uopšte, suštinsko svojstvo svetlosti, a ne samo, kao što je Maks Plank verovao, neka vrsta ograničenja u interakciji između svetlosti i materije. Jedan drugi, često previđani, doprinos ovoga rada predstavlja Ajnštajnova izvanredna procena (6.17
×
{\displaystyle \times } 1023) Avogadrovog broja (6.02
×
{\displaystyle \times } 1023). Međutim, kako Ajnštajn u ovom radu „nije” predložio da je svetlost sastavljena od čestica, koncept svetlosti kao snopa „fotona” neće ni biti predložen sve do 1909 (videti ispod). Njegov drugi članak 1905, pod nazivom O kretanju—zahtevano od strane Molekularne kinetičke teorije toplote—malih čestica suspendovanih u nepokretnoj tečnosti (On the Motion—Required by the Molecular Kinetic Theory of Heat—of Small Particles Suspended in a Stationary Liquid, ili na nemačkom, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen), pokriva njegovu studiju Braunovog kretanja i obezbeđuje empirijske dokaze za postojanje atoma. Pre pojave ovog članka, atom je bio prihvaćen kao koristan koncept, ali fizičari i hemičari su se vatreno raspravljali da li su atomi realni entiteti ili nisu. Ajnštajnovo statističko razmatranje ponašanja atoma dalo je eksperimentatorima način da broje atome gledajući kroz obični mikroskop. Vilhelm Osvald (Wilhelm Ostwald), jedan od vođa antiatomske škole, kasnije se poverio Arnoldu Zomerfeldu (Arnold Sommerfeld) da se njegova sumnja u atome preobratila u verovanje zahvaljujući Ajnštajnovom potpunom objašnjenju Braunovog kretanja.[18] Braunovo kretanje bilo je takođe objašnjeno i od strane Luja Bašelijera (Louis Bachelier) 1900. godine.
Ajnštajnov treći rad iste godine, O elektrodinamici pokretnih tela (On the Electrodynamics of Moving Bodies, ili u originalu, Zur Elektrodynamik bewegter Körper), bio je objavljen juna meseca 1905. Ovaj rad predstavlja uvod u Specijalnu teoriju relativnosti, kao teoriju vremena, prostora, mase i energije, koja je u saglasnosti sa teorijom elektromagnetizma, ali ne opisuje pojavu gravitacije. Dok je razvijao ovaj svoj članak, Ajnštajn je o njemu pisao Milevi kao o „našem radu o relativnom kretanju”, i ovo je navelo neke da pretpostave da je i Mileva imala svoju ulogu u stvaranju ovog čuvenog naučnog rada.
Nekolicina istoričara nauke veruju da su i Ajnštajn i njegova žena oboje bili upoznati sa time da je čuveni francuski matematički fizičar Anri Poenkare bio već objavio relativističke jednačine, par nedelja pre nego što je Ajnštajn prijavio svoj rad za objavljivanje. Ali mnogi veruju da je njihov rad nezavisan i da se razlikuje od Poenkareovog rada u mnogo prelomnih momenata, naime, u pogledu „etera”, Ajnštajn odriče postojanje etera, dok ga Poenkare smatra suvišnim. Slično tome, još uvek je diskutabilno da li je on znao za rad iz 1904 Hendrika Antona Lorenca, koji sadrži u sebi veći deo jednačina ove teorije i na koga se Poenkare poziva u svom radu. Većina istoričara, međutim, veruje da se ajnštajnovska relativnost razlikuje na mnogo ključnih načina od drugih teorija relativnosti koje su kružile u to vreme, i da mnoga pitanja u vezi sa prioritetom ovog otkrića izrastaju iz obmanjive slike Ajnštajna kao genija koji je radio u potpunoj izolaciji.[19] Mada je sigurno da je Ajnštajn diskutovao o fizici sa Milevom, ne postoje solidni dokazi o tome da je ona učinila neki značajan doprinos njegovom radu.
U četvrtom radu, Da li inercija tela zavisi od njegovog energetskog sadržaja? (Does the Inertia of a Body Depend Upon Its Energy Content?, ili u originalu Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?), objavljenom krajem 1905, on pokazuje da je iz relativističkih aksioma moguće izvesti čuvenu jednakost koja izražava ekvivalenciju između mase i energije. Energetski ekvivalent (E) nekog iznosa mase (m) jednak je masi pomnoženoj sa kvadratom brzine svetlosti (c): E = mc². Međutim, Poenkare je bio prvi koji je objavio ovu „energetsku jednakost” 1900. godine, u neznatno drugačijoj formi, naime kao: m = E / c² — videti takođe Osporavanje prioriteta otkrića relativnosti....